

MODULE 4

SOFTWARE PROJECT MANAGEMENT

Software project management is an essential part of software engineering.

Important goals are:

1. to deliver the software to the customer at the agreed time;

2. to keep overall costs within budget

3. to deliver software that meets the customer’s expectations;

4. to maintain a coherent and well-functioning development team.

The fundamental project management activities that are common to all organizations:

1. Project planning → Project managers are responsible for planning, estimating, and

scheduling project development and assigning people to tasks.

2. Risk management → Project managers have to assess the risks that may affect a

project, monitor these risks, and take action when problems arise.

3. People management → Project managers are responsible for managing a team of people. They

have to choose people for their team and establish ways of working that lead to effective team

performance.

4. Reporting → Project managers are usually responsible for reporting on the progressof a project

to customers and to the managers of the company developing the software.

5. Proposal writing → The first stage in a software project may involve writing a proposal to win a

contract to carry out an item of work. The proposal describes the objectives of the project and how

it will be carried out. It usually includes cost and schedule estimates and justifies why the project

contract should be awarded to a particular organization or team.

RISK MANAGEMENT

• Risk management is one of the most important jobs for a project

manager.

• Risk management involves anticipating risks that might affect the project schedule or the

quality of the software being developed, and then taking action to avoid these risks.

• Risks can be categorized according to type of risk (technical, organizational, etc.)

Classification of risks according to what these risks affect:

1. Project risks → affect the project schedule or resources. An example of a project risk is the loss

of an experienced system architect.

2. Product risks → affect the quality or performance of the software being developed. An example

of a product risk is the failure of a purchased component to perform as expected.

3. Business risks → affect the organization developing or procuring the software. For example, a

competitor introducing a new product is a business risk.

Effective risk management makes it easier to cope with problems and to ensure that these do not

lead to unacceptable budget or schedule slippage.

• For small projects, formal risk recording may not be required, but the project manager should be

aware of them.

• The specific risks that may affect a project depend on the project and the organizational

environment in which the software is being developed

• Software risk management is important because of the inherent uncertainties in software

development.

RISK MANAGEMENT PROCESS

An outline of the process of risk management is presented inFigure. It involves several stages:

1.Risk identification→ You should identify possible project, product,and business risks.

2. Risk analysis → You should assess the likelihood and consequences of these risks.

3. Risk planning → You should make plans to address the risk, either by avoiding it or by

minimizing its effects on the project.

4. Risk monitoring → You should regularly assess the risk and your plans for risk mitigation and

revise these plans when you learn more about the risk.

•The risk management process is an iterative process that continues throughout a project.

Risk Identification:

• Risk identification is the first stage of the risk management process.

• It is concerned with identifying the risks that could pose a major threat to the software

engineering process, the software being developed, or the development organization.

• Risk identification may be a team process in which a team gets together to brainstorm possible

risks.

• As a starting point for risk identification, a checklist of different types of risk may be used

6 types of risk may be included in a risk checklist:

1. Estimation risks → arise from the management estimates of the resources

required to build the system.

2. Organizational risks → arise from the organizational environment where the software is being

developed.

3. People risks → are associated with the people in the development team.

4. Requirements risks → come from changes to the customer requirements and the process of

managing the requirements change.

5. Technology risks → come from the software or hardware technologies that are used to develop

the system.

6. Tools risks → come from the software tools and other support software used to develop the

system.

Risk Analysis:

• During the risk analysis process, you have to consider each identified risk and make a

judgment about the probability and seriousness of that risk.

• It is not possible to make precise, numeric assessment of the probability and seriousness

of each risk.

• You should assign the risk to one of a number of bands:

1. The probability of the risk might be assessed as insignificant, low, moderate, high, or very high.

2. The effects of the risk might be assessed as catastrophic (threaten the survival of the project),

serious (would cause major delays), tolerable (delays are within allowed contingency), or

insignificant.

• You may then tabulate the results of this analysis process using a table ordered according

to the seriousness of the risk.

Risk Planning:

• The risk planning process develops strategies to manage the key risks that threaten the project.

• For each risk, you have to think of actions that you might take to minimize the disruption to the

project if the problem identified in the risk occurs.

• You should also think about the information that you need to collect while monitoring the project

so that emerging problems can be detected before they become serious.

The possible risk management strategies fall into 3 categories:

1. Avoidance strategies → Following these strategies means that the probability that the risk will

arise is reduced. An example of a risk avoidance strategy is the strategy for dealing with defective

components.

2. Minimization strategies → Following these strategies means that the impact of the risk is

reduced. An example of a risk minimization strategy is the strategy for staff illness.

3. Contingency plans → Following these strategies means that you are prepared for the worst and

have a strategy in place to deal with it. An example of a contingency strategy is the strategy for

organizational financial problems.

Risk Monitoring:

• Risk monitoring is the process of checking that your assumptions about the product, process, and

business risks have not changed.

• You should regularly assess each of the identified risks to decide whether or not that risk is

becoming more or less probable.

Risk Indicators

MANAGING PEOPLE

The people working in a software organization are its greatest assets.

•It is expensive to recruit and retain good people.

• Software managers have to ensure that the engineers working on a project are as productive as

possible.

It is important that software project managers understand the technical issues that influence the

work of software development.

• Software engineers often have strong technical skills but may lack the softer skills that enable

them to motivate and lead a project development team.

• As a project manager, you should be aware of the potential problems of people management and

should try to develop people management skills.

4 critical factors that influence the relationship between a manager and the people that he or she

manages:

1. Consistency → All the people in a project team should be treated in a comparable way. No one
expects all rewards to be identical, but people should not feel that their contribution to the
organization is undervalued.

2. Respect → Different people have different skills, and managers should respect these differences.
3. Inclusion → People contribute effectively when they feel that others listen to them and take

account of their proposals. It is important to develop a working environment where all views, even
those of the least experienced staff, are considered.

4. Honesty → As a manager, you should always be honest about what is going well and what is
going badly in the team. You should also be honest about your level of technical knowledge and be
willing to defer to staff with more knowledge when necessary.

Motivating People:

As a project manager, you need to motivate the people who work with you so that they will

contribute to the best of their abilities.

• In practice, motivation means organizing work and its environment to encourage people to work

as effectively as possible.

• To provide this encouragement, you should understand a little about what motivates people.

• People are motivated by satisfying their needs. These needs are arranged in a series of levels, as

shown in Figure.

The lower levels of this hierarchy represent fundamental needs for food, sleep, and so on, and the

need to feel secure in an environment.

• Social need is concerned with the need to feel part of a social grouping.

• Esteem need represents the need to feel respected by others, and self-realization need is

concerned with personal development.

• People need to satisfy lower-level needs such as hunger before the more abstract, higher-level

needs.

• People working in software development organizations are not usuallyhungry, thirsty, or

physically threatened by their environment. Therefore,

making sure that peoples’ social, esteem, and self-realization needs are satisfied is most important

from a management point of view.

1. To satisfy social needs, you need to give people time to meet their co-workers and provide

places for them to meet. This is relatively easy when all of the members of a development team

work in the same place. Social networking systems and teleconferencing can be used for remote

communications.

2. To satisfy esteem needs, you need to show people that they are valued by the organization.

Public recognition of achievements is a simple and effective way of doing this.

3. Finally, to satisfy self-realization needs, you need to give people responsibility for their work,

assign them demanding (but not impossible) tasks, and provide opportunities for training and

development where people can enhance their skills. Training is an important motivating influence

as people like to gain new knowledge and learn new skills.

Bass and Dunteman (Bass and Dunteman 1963) identified 3

classifications for professional workers:

1. Task-oriented people → who are motivated by the work they do. In software engineering, these

are people who are motivated by the intellectual challenge of software development.

2. Self-oriented people → who are principally motivated by personal success and recognition.

They are interested in software development as a means of achieving their own goals. They often

have longer-term goals and they wish to be successful in their work to help realize these goals.

3. Interaction-oriented people → who are motivated by the presence and actions of co-workers.

People Capability Maturity Model (P-CMM) → is a framework forassessing how well organizations

manage the development of their staff. It highlights best practice in people management and

provides a basis for organizations to improve their people management processes. It is best suited

to large rather than small, informal companies.

Teamwork

•As it is impossible for everyone in a large group to work together on a single problem, large teams

are usually split into a number of smaller groups.

• Each group is responsible for developing part of the overall system.

• The best size for a software engineering group is 4 to 6 members, and they should never have

more than 12 members.

• When groups are small, communication problems are reduced.

In a cohesive group, members think of the group as more important than the individuals who are

group members.

➢They are loyal to the group.

➢They identify with group goals and other group members.

➢They attempt to protect the group, as an entity, from outside interference. This makes the group

robust and able to cope with problems and unexpected situations.

• The benefits of creating a cohesive group are:

1. The group can establish its own quality standards.

2. Individuals learn from and support each other.

3. Knowledge is shared.

4. Refactoring and continual improvement is encouraged

• Good project managers should always try to encourage group cohesiveness.

• A manager or team leader’s job is to create a cohesive group and organize

that group so that they work together effectively.

• This task involves selecting a group with the right balance of technical skills and

personalities.

• Technical knowledge and ability should not be the only factor used to select group members.

• People who are motivated by the work are likely to be the strongest technically

• People who are self-oriented will probably be best at pushing the work forward to finish the

job.

• People who are interaction-oriented help facilitate communications within the group.

• The project manager has to control the group so that individual goals

do not take precedence over organizational and group objectives.

• This control is easier to achieve if all group members participate in each stage of the project.

• Individual initiative is most likely to develop when group members are

given instructions without being aware of the part that their task plays in the overall project.

• If all the members of the group are involved in the design from the

start, they are more likely to understand why design decisions have been made. They may

then identify with these decisions rather than oppose them.

Group Communications:

• It is absolutely essential that group members communicate effectively and efficiently with

each other and with other project stakeholders.

• Good communication also helps strengthen group cohesiveness.

• Group members:

1. Exchange information on the status of their work, the design decisions that have been made,

and changes to previous design decisions.

2. Resolve problems that arise with other stakeholders and inform these stakeholders of

changes to the system, the group, and delivery plans.

3. Come to understand the motivations, strengths, and weaknesses of other people in the group.

Project planning

Three main parameters should be used when computing the costs of a software development

project:

■ effort costs (the costs of paying software engineers and managers);

■ hardware and software costs, including hardware maintenance and software support; and

■ travel and training costs.

For most projects, the biggest cost is the effort cost.

You have to estimate the total effort (in person-months) that is likely to be required to complete

the work of a project.

SOFTWARE PRICING

In principle, the price of a software system developed for a customer is simply the cost of

development plus profit for the developer.

• In practice, however, the relationship between the project cost and the price quoted to the

customer is not usually so simple.

• When calculating a price, you take broader organizational, economic, political, and business

considerations into account

FACTORS AFFECTING SOFTWARE PRICING

PLAN DRIVEN DEVELOPMENT

Plan-driven or plan-based development is an approach to software engineering where the

development process is planned in detail.

• A project plan is created that records the work to be done, who will do it, the development

schedule, and the work products.

• Managers use the plan to support project decision making and as a way of measuring

progress.

• Agile development involves a different planning process, where decisions are delayed.

• The problem with plan-driven development is that early decisions have to be revised because

of changes to the environments in which the software is developed and used.• Delaying

planning decisions avoids unnecessary rework.

• However, the arguments in favor of a plan-driven approach are that early planning allows

organizational issues (availability of staff, other projects, etc.) to be taken into account.

Potential problems and dependencies are discovered before the project starts, rather than once

the project is underway.

• The best approach to project planning involves a sensible mixture of plan-based and agile

development.

SECTIONS OF PROJECT PLAN

1. Introduction: Briefly describes the objectives of the project and sets out the constraints (e.g.,

budget, time) that affect the management of the project.

2. Project organization :Describes the way in which the development team is organized, the

people involved, and their roles in the team.

3. Risk analysis: Describes possible project risks, the likelihood of these risks arising, and the

risk reduction strategies that are proposed.

4. Hardware and software resource requirements: Specifies the hardware and support

software required to carry out the development. If hardware has to be purchased, estimates of

the prices and the delivery schedule may be included.

5. Work breakdown: Sets out the breakdown of the project into activities and identifies the

inputs to and the outputs from each project activity.

6. Project schedule: Shows the dependencies between activities, the estimated time required

to reach each milestone, and the allocation of people to activities. The ways in which the

schedule may be presented are discussed in the next section of the chapter.

7. Monitoring and reporting mechanisms: Defines the management reports that should be

produced, when these should be produced, and the project monitoring mechanisms to be use.

PLANNING PROCESS

Project planning is an iterative process that starts when you create an initial project plan during the

project startup phase.

•Figure is a UML activity diagram that shows a typical workflow for a project planning process.

•Plan changes are inevitable. As more information about the system and the project team becomes

available during the project, you should regularly revise the plan to reflect requirements, schedule,

and risk changes. Changing business goals also leads to changes in project plans.

At the beginning of a planning process, you should assess the constraints affecting the project.
These constraints are the required delivery date, staff available, overall budget, available tools, and
so on. In conjunction with this assessment, you should also identify the project milestones and
deliverables.
Milestones are points in the schedule against which you can assess progress, for example, the
handover of the system for testing. Deliverables are work products that are delivered to the
customer, for example, a requirements document for the system.
The process then enters a loop that terminates when the project is complete. You draw up an
estimated schedule for the project, and the activities defined in the schedule are initiated or are
approved to continue. After some time (usually about two to three weeks), you should review
progress and note discrepancies from the planned schedule.
Because initial estimates of project parameters are inevitably approximate, minor slippages are
normal and you will have to make modifications to the original plan.
PROJECT SCHEDULING

Project scheduling is the process of deciding how the work in a project will be organized as
separate tasks, and when and how these tasks will be executed.
•You estimate the calendar time needed to complete each task and the effort required, and you
suggest who will work on the tasks that have been identified.
•You also have to estimate the hardware and software resources that are needed to complete each
task.
•An initial project schedule is usually created during the project startup phase. This schedule is
then refined and modified during development planning.
Scheduling in plan-driven projects (Figure) involves breaking down the total work involved in a
project into separate tasks and estimating the time required to complete each task.

•Tasks should normally last at least a week and no longer than 2 months.

•The maximum amount of time for any task should be 6 to 8 weeks. If a task will take longer than
this, it should be split intosubtasks for project planning and scheduling.

•Some of these tasks are carried out in parallel, with different people working on different
components of the system. You have to coordinate these parallel tasks and organize the work so
that the workforce is used optimally and you don’t introduce unnecessary dependencies between
the tasks.

•It is important to avoid a situation where the whole project is delayed because a critical task is
unfinished.

•When you are estimating schedules, you must take into account the possibility that things will go
wrong. People working on a project may fall ill or leave, hardware may fail, and essential support
software or hardware may be delivered late.

•If the project is new and technically advanced, parts of it may turn out to be more difficult and take
longer than originally anticipated.

•A good rule of thumb is to estimate as if nothing will go wrong and then increase your estimate to
cover anticipated problems.

•A further contingency factor to cover unanticipated problems may also be added to the estimate.
This extra contingency factordepends on the type of project, the process parameters (deadline,
standards, etc.), and the quality and experience of the software engineers workingon the project.

Project schedules may simply be documented in a table or spreadsheet showing the tasks,
estimated effort, duration, and task dependencies (Figure 23.5). However, this style of presentation
makes it difficult to see the relationships and dependencies between the different activities. For this
reason, alternative graphical visualizations of project schedules have been developed that are often
easier to read and understand.
Two types of visualization are commonly used:
1. Calendar-based bar charts show who is responsible for each activity, the expected elapsed
time, and when the activity is scheduled to begin and end. Barcharts are also called Gantt
charts, after their inventor, Henry Gantt.
2. Activity networks show the dependencies between the different activities making up a
project. These networks are described in an associated web section.
Project activities are the basic planning element. Each activity has:
■ a duration in calendar days or months;
■ an effort estimate, which shows the number of person-days or person-months to
complete the work;
■ a deadline by which the activity should be complete; and
■ a defined endpoint, which might be a document, the holding of a review meeting,
the successful execution of all tests, or the like.

• Figure 23.6 takes the information in Figure 23.5 and presents the project schedule as a bar chart showing a

project calendar and the start and finish dates of tasks.

• Reading from left to right, the bar chart clearly shows when tasks start and end. The
milestones (M1, M2, etc.) are also shown on the bar chart. Notice that tasks that are

independent may be carried out in parallel. For example, tasks T1, T2, and T4 all start at the
beginning of the project

• If a task is delayed, later tasks that are dependent on it may be affected. They cannot start
until the delayed task is completed. Delays can cause serious problems with staff allocation,
especially when people are working on several projects at the same time. If a task (T) is
delayed, the people allocated to it may be assigned to other work (W).

• To complete this work may take longer than the delay, but, once assigned, they cannot
simply be reassigned back to the original task. This may then lead to further delays in T as
they complete W.

• Normally, you should use a project planning tool, such as the Basecamp or Microsoft
project, to create, update, and analyze project schedule information.

• Project management tools usually expect you to input project information into atable, and
they create a database of project information. Bar charts and activity chartscan then be
generated automatically from this database.

AGILE PLANNING
Agile development methods such as Scrum (Rubin 2013) and Extreme Programming (Beck and Andres 2004)
have a two-stage approach to planning, correspondingto the startup phase in plan-driven development and
development planning:
1. Release planning, which looks ahead for several months and decides on the features that should be
included in a release of a system.
2. Iteration planning, which has a shorter term outlook and focuses on planning the next increment of a
system. This usually represents 2 to 4 weeks of work for the team.

• Release planning involves selecting and refining the stories that will reflect the features to

be implemented in a release of a system and the order in which the stories should be
implemented.

o The customer has to be involved in this process. A release date is then chosen, and
the stories are examined to see if the effort estimate is consistent with that date.

o If not, stories are added or removed from the list.

• Iteration planning is the first stage in developing a deliverable system increment.
o Stories to be implemented during that iteration are chosen, with the number of

stories reflecting the time to deliver an workable system (usually 2 or 3 weeks) and
the team’s velocity. When the delivery date is reached, the development iteration is
complete,even if all of the stories have not been implemented.

At the start of each development iteration, there is a task planning stage where the developers

break down stories into development tasks. A development task should take 4–16 hours. All of

the tasks that must be completed to implement all of the stories in that iteration are listed. The

individual developers then sign up for the specific planning tasks that they will implement.

•Each developer knows their individual velocity and so should not sign up for more tasks than

they can implement in the time allotted

This approach to task allocation has two important benefits:

1. The whole team gets an overview of the tasks to be completed in an iteration. They therefore

have an understanding of what other team members are doing and who to talk to if task

dependencies are identified.

2. Individual developers choose the tasks to implement; they are not simply allocated tasks by a

project manager. They therefore have a sense of ownership in these tasks, and this is likely to

motivate them to complete the task.

Halfway through an iteration, progress is reviewed. At this stage, half of the story effort points

should have been completed.

Advantages:

•This approach to planning has the advantage that a software increment is always delivered at

the end of each project iteration.

•If the features to be included in the increment cannot be completed in the time allowed, the

scope of the work is reduced.

•The delivery schedule is never extended..

Disadvantages

•A major difficulty in agile planning is that it relies on customer involvement and availability.

•This involvement can be difficult to arrange, as customer representatives sometimes have to

prioritize other work and are notavailable for the planning game.

•Furthermore, some customers may be more familiar with traditional project plans and may

find it difficult to engage in an agile planning process.

Configuration management

•The configuration management of a software system product involves four closely related

activities (Figure 1):

1. Version control: This involves keeping track of the multiple versions of system components

and ensuring that changes made to components by different developers do not interfere with

each other.

2. System building: This is the process of assembling program components, data, and libraries,

then compiling and linking these to create an executable system.

3. Change management: This involves keeping track of requests for changes to delivered

software from customers and developers, working out the costs and impact of making these

changes, and deciding if and when the changes should be implemented.

4. Release management: This involves preparing software for external release and keeping

track of the system versions that have been released for customer use.

In large software projects, configuration management is sometimes part of software quality

management.

•The quality manager is responsible for both quality management and configuration

management.

•When a pre-release version of the software is ready, the development team hands it over to the

quality management team.

•The QM team checks that the system quality is acceptable. If so, it then becomes a controlled

system, which means that all changes to the system have to be agreed on and recorded before

they are implemented.

•Many specialized terms are used in configuration management. Unfortunately, these are not

standardized.

•Military software systems were the first systems in which software CM was used, so the

terminology for these systems reflected the processes and terminology used in hardware

configuration management.

•Commercial systems developers did not know about military procedures or terminology and

so often invented their own terms.

•Agile methods have also devised new terminology in order to distinguish the agile approach

from traditional CM methods

Version management

•A codelineis a sequence of versions of source code, with later versions in the sequence

derived from earlier versions.

•Codelinesnormally apply to components of systems so that there are different versions of each

component.

•A baselineis a definition of a specific system.

•The baseline specifies the component versions that are included in the system and identifies

the libraries used, configuration files, and other system information.

Version control (VC) systems identify, store, and control access to the different versions of

components.

•There are two types of modern version control system:

1.Centralized systems, where a single master repository maintains all versions of the software

components that are being developed. Subversion is a widely used example of a centralized VC

system.

2.Distributed systems, where multiple versions of the component repository exist at the same

time. Git, is a widely used example of a distributed VC system.

Centralized and distributed VC systems provide comparable functionality but implement this

functionality in different ways. Key featuresof these systems include:

1. Version and release identification: Managed versions of a component are assigned unique

identifiers when they are submitted to the system. These identifiers allow different versions of

the same component to be managed, without changing the component name. Versions may also

be assigned attributes, with the set of attributes used to uniquely identify each version.

2. Change history recording: The VC system keeps records of the changes that have been

made to create a new version of a component from an earlier version.

3. Independent development: Different developers may be working on the same component

at the same time. The version control system keeps track of components that have been

checked out for editing and ensures that changes made to a component by different developers

do not interfere.

4. Project support: A version control system may support the development of several projects,

which share components. It is usually possible to check in and check out all of the files

associated with a project rather than having to work with one file or directory at a time.

5. Storage management: Rather than maintain separate copies of all versions of a component,

the version control system may use efficient mechanisms to ensure that duplicate copies of

identical files are not maintained. Where there are only small differences between files, the VC

system may store these differences rather than maintain multiple copies of files. A specific

version may be automatically re-created by applying the differences to a master version

In a distributed VC system, such as Git, a different approach is used.

•A “master” repository is created on a server that maintains the code produced by the

development team.

•Instead of simply checking out the files that they need, a developer creates a clone of the

project repository that is downloaded and installed on his or her computer.

•Developers work on the files required and maintain the new versions on their private

repository on their own computer.

•When they have finished making changes, they “commit” these changes and update their

private server repository.

•They may then “push” these changes to the project repository or tell the integration manager

that changed versions are available.

•He or she may then “pull” these files to the project repository (see Figure 4). In this example,

both Bob and Alice have cloned the project repository and have updated files.

•They have not yet pushed these back to the project repository.

This model of development has a number of advantages:

1. It provides a backup mechanism for the repository. If the repository is corrupted, work can
continue and the project repository can be restored from local copies.

2. It allows for offline working so that developers can commit changes if they do not have a network
connection.

3. Project support is the default way of working. Developers can compile and test the entire system
on their local machines and test the changes they have made.

Branching and Merging

• A consequence of the independent development of the same component is that codelines

may branch.

• Rather than a linear sequence of versions that reflect changes to the component over time,
there may be several independent sequences, as shown in Figure 25.8. This is normal in
system development, where different developers work independently on different versions
of the source code and change it in different ways.

• It is generally recommended when working on a system that a new branch should be
created so that changes do not accidentally break a working system.

• At some stage, it may be necessary to merge codeline branches to create a new version of a
component that includes all changes that have been made. This is also shown in Figure 25.8,
where component versions 2.1.2 and 2.3 are merged to create version 2.4.

• If the changes made involve completely different parts of the code, the component versions
may be merged automatically by the version control system by combining the code changes.

DELTA BASED VERSION MANAGEMENT

• When version control systems were first developed, storage management was one of their
most important functions. Disk space was expensive, and it was important to minimize the
disk space used by the different copies of components.

• Instead of keeping a complete copy of each version, the system stores a list of differences
(deltas) between one version and another.

• By applying these to a master version (usually the most recent version), a target version can
be re-created. This is illustratedin Figure 7.

• When a new version is created, the system simply stores a delta, a list of differences,
between the new version and the olderversion used to create that new version.

• In Figure 7, the shaded boxes represent earlier versions of a component that are
automatically re-created from the most recent component version.

• Deltas are usually stored as lists of changed lines, and, by applying these automatically, one
version of a component can be created from another.

• As the most recent version of a component will most likely be the one used, most systems
store that version in full. The deltasthen define how to re-create earlier system versions.

• One of the problems with a delta-based approach to storage management is that it
can take a long time to apply all of the deltas.

• As disk storage is now relatively cheap, Gituses an alternative, faster approach. Git does not
use deltas but applies a standard compression algorithm to stored files and their
associated meta-information. It does not store duplicate copies of files.

System Building

System building is the process of creating a complete, executable system by compiling and linking
the system components, external libraries, configuration files, and other information.
System-building tools and version control tools must be integrated as the build process takes
component versions from the repository managed by the version control system.

CONTINOUS INTEGRATION

In keeping with the agile methods notion of making many small changes, continuous integration
involves rebuilding the mainline frequently, after small source code changes have been made. The
steps in continuous integration are:
1. Extract the mainline system from the VC system into the developer’s private workspace.
2. Build the system and run automated tests to ensure that the built system passes all tests. If not,
the build is broken, and you should inform whoever checked in the last baseline system. He or she
is responsible for repairing the problem.
3. Make the changes to the system components.
4. Build the system in a private workspace and rerun system tests. If the tests fail, continue editing.
5. Once the system has passed its tests, check it into the build system server but do not commit it as
a new system baseline in the VC system.
6. Build the system on the build server and run the tests. Alternatively, if you are using Git, you can
pull recent changes from the server to your private workspace. You need to do this in case others
have modified components since you checked out the system. If this is the case, check out the
components that have failed and edit these so that tests pass on your private workspace.
7. If the system passes its tests on the build system, then commit the changes you have made as a
new baseline in the system mainline.

CHANGE MANAGEMENT

Change is a fact of life for large software systems. Organizational needs and requirements change
during the lifetime of a system, bugs have to be repaired, and systems have to adapt to changes in
their environment.
•To ensure that the changes are applied to the system in a controlled way, you need a set of tool-
supported, change management processes.
•Change management is intended to ensure that the evolution of the system is controlled and that
the most urgent and cost-effective changes are prioritized.
•Change management is the process of analyzing the costs and benefits of proposed changes,
approving those changes that are cost-effective, and tracking which components in the system have
been changed.

•Figure 11 is a model of a change management process that shows the main change management
activities. This process should come into effect when the software is handed over for release to
customers or for deployment within an organization

System developers decide how to implement the change and estimate the time required to
complete the change implementation.
•After a change request has been submitted, it is checked to ensure that it is valid.
•The checker may be from a customer or application support team or, for internal requests, may be
a member of the development team. The change request may be rejected at this stage.
•If the change request is a bug report, the bug may have already been reported and repaired.
•Sometimes, what people believe to be problems are actually misunderstandings of what the
system is expected to do.
•On occasions, people request features that have already been implemented but that they don’t
know about.
•If any of these features are true(ie. the change is not valid), the issue is closed and the form
is updated with the reason for closure.
•If it is a valid change request, it is then logged as an outstanding request for subsequent analysis.
•For valid change requests, the next stage of the process is change assessment and costing.
•This function is usually the responsibility of the development or maintenance team as they can
work out what is involved in implementing the change.

Tools to support change management may be relatively simple issue or bug tracking systems
or software that is integrated with a configuration management package for large-scale systems,
such as Rational Clearcase.
•Issue tracking systems allow anyone to report a bug or make a suggestion for a system change, and
they keep track of how the development team has responded to the issues.
•More complex systems are built around a process model of the change management process. They
automate the entire process of handling change requests from the initial customer proposal to final
change approval and change submission to the development team.

RELEASE MANAGEMENT

•Release creation is the process of creating the collection of files and documentation that
include all components of the system release.
•This process involves several steps:

1.The executable code of the programs and all associated data files must be identified in the version
control system and tagged with the release identifier.
2.Configuration descriptions may have to be written for different hardware and operating systems.
3.Updated instructions may have to be written for customers who need to configure their own
systems.
4.Scripts for the installation program may have to be written.
5.Web pages have to be created describing the release, with links to system documentation.
6.Finally, when all information is available, an executable master image of the software must be
prepared and handed over for distribution to customers or sales outlets.

When planning the installation of new system releases, you cannot assume that customers will
always install new system releases. Some system users may be happy an existing system and may
not consider it worthwhile to absorb the cost of changing to a new release.
•New releases of the system cannot, therefore, rely on the installation of previous releases.
•One benefit of delivering software as a service (SaaS) is that it avoids all of these problems.
•It simplifies both release management and system installation for customers.
•The software developer is responsible for replacing the existing release of a system with a new
release, which is made available to all customers at the same time.
•However, this approach requires that all servers running the services be updated at the same time.
To support server updates, specialized distribution management tools such as Puppet have been
developed for “pushing” new software to servers.

SCRUM FRAMEWORK

Scrum (the name is derived from an activity that occurs during a rugby match) is an agile software
development method that was conceived by Jeff Sutherland and his development team in the early
1990s.
Scrum principles are consistent with the agile manifesto and are used to guide development
activities within a process that incorporates the following framework activities: requirements,
analysis, design, evolution, and delivery. Within each framework activity, work tasks occur within a
process pattern (discussed in the following paragraph) called a sprint. The work conducted within
a sprint (the number of sprints required for each framework activity will vary depending on
product complexity and size) is adapted to the problem at hand and is defined and often modified in
real time by the Scrum team.

Scrum emphasizes the use of a set of software process patterns that have proven effective for
projects with tight timelines, changing requirements, and business criticality. Each of these process
patterns defines a set of development activities:
Backlog a prioritized list of project requirements or features that providbusiness value for the
customer. Items can be added to the backlog at any time(this is how changes are introduced). The
product manager assesses the backlog
and updates priorities as required.
Sprints —consist of work units that are required to achieve a requirement defined in the backlog
that must be fi t into a predefi ned time-box 10 (typically30 days). Changes (e.g., backlog work
items) are not introduced during the sprint. Hence, the sprint allows team members to work in a
short-term, butstable environment.
Scrum meetings —are short (typically 15-minute) meetings held daily by theScrum team. Three
key questions are asked and answered by all team members
[Noy02]:
• What did you do since the last team meeting?

• What obstacles are you encountering?
• What do you plan to accomplish by the next team meeting?
A team leader, called a Scrum master, leads the meeting and assesses the responses from each
person. The Scrum meeting helps the team to uncover potential problems as early as possible. Also,
these daily meetings lead to “knowledgesocialization” and thereby promote a self-organizing team
structure.
Demos —deliver the software increment to the customer so that functionality that has been
implemented can be demonstrated and evaluated by the customer.
It is important to note that the demo may not contain all planned functionality,but rather those
functions that can be delivered within the time-box
that was established.

KANBAN APPROACH
Kanban is a workflow management method for defining, managing and improving services that
deliver knowledge work. It aims to help you visualize your work, maximize efficiency, and improve
continuously.

What is a Kanban Card?
In Kanban, work items are represented by cards. You can imagine these as sticky notes on the
whiteboard.
KANBAN PRACTICES

1. Visualize work
By creating a visual model of your work and process, you can observe the flow of work moving
through the Kanban system. Making the work visible, along with visual indications of blockers,
bottlenecks, and queues, instantly leads to increased communication and collaboration. This helps
teams see how fast their work is moving through the system and where they can focus their efforts .

2. Limit work-in-process

By limiting how much unfinished work is in process, you can reduce the time it takes an item to

travel through the Kanban system. You can also avoid problems caused by task switching and

reduce the need to constantly reprioritize items. WIP limits unlock the full potential of Kanban,

enabling teams to deliver quality work faster than ever in a healthier, more sustainable

environment.

3. Focus on flow

Using work-in-process limits and team-driven policies, you can optimize your Kanban system to:

• Improve the flow of work

• Collect metrics to analyze flow

• Get leading indicators of future problems

A consistent flow of work is essential for faster and more reliable delivery, bringing greater value to

your customers, team, and organization.

4. Continuous improvement

Once your Kanban system is in place, it becomes the cornerstone for a culture of continuous

improvement. Teams measure their effectiveness by tracking flow, quality, throughput, lead times,

and more.

Experiments and analysis can change the system to improve the team’s effectiveness. Continuous

improvement is a Lean improvement technique that helps streamline workflows, saving time and

money across the enterprise.

